
APPROXIMATE I~ETHOD FOR THE NUMERICAL SOLUTION 

OF UNSTEADY HEAT CONDUCTION PROBLEMS WITH 

VARIABLE BOUNDARY CONDITIONS OF THE THIRD KIND 

O. T. II'chenko and L. I. Shifan UDC 536.24 

An approx imate  method for  solving unsteady heat  conduction p r o b l e m s  with var iab le  bound- 
a ry  conditions of the th i rd  o rde r ,  which can be used  for  bodies  of complex shape,  is de-  
sc r ibed .  

The exis t ing methods for  the numer i ca l  solution of the p rob lem of the unsteady t e m p e r a t u r e  field of 
bodies  of c l a s s i ca l  shape with boundary  conditions of the th i rd  kind which va ry  with t ime [1-3] only enable 
the t e m p e r a t u r e  field to be  calcula ted on a compute r  with a l a rge  m e m o r y ,  with ce r t a in  l imita t ions  on the 
ass igned  boundary  conditions. 

To inves t iga te  the t e m p e r a t u r e  field of bodies  of complex shape under t r ans ien t  conditions with bound- 
a r y  conditions of the th i rd  kind which v a r y  with t ime ,  e l ec t r i ca l  s imulat ion on gr ids  is employed.  

In view of the count less  va r i e t y  of poss ib le  t r ans ien t  condit ions,  i t  is of in te res t  to find some approx i -  
ma te  method of solving the p rob lem of the unsteady t e m p e r a t u r e  field for  boundary conditions of the th i rd  
kind which va ry  in an a r b i t r a r y  m anne r ,  which would enable one to solve the p rob lem for  bodies  of complex 
shape,  without having to use mult iple  s imulat ion,  and for  bodies  of c lass ica l  shape by the use of the s imples t  
computer .  

Cons ider  the one-d imens iona l  p rob l em of unsteady heat  conduction in an infinite plate 

Ot O~t 
= q2 (1) 

a'c Ox ~ 

with the following initial  and boundary  conditions; 

t(0, x) = 0, (2) 
t(~, 0) = T2, (3) 

at (r,Ox l)_.  a~ ( t - - to)x=/ (4) 

The solution will be sought in the fo rm 

t / x ' l  f I / ~h (e) exp d~ + 2 i~-- ~) exp d~. (5) t (% x) V-h (~ ~ 4a ~ (z - -  # )  ~t2 (#) " (x - -  1)* 
, - -  , ~" 4a ~ ( ~ - e )  
0 0 

By determining the functions #i(~) and tt2(d ) from the boundary conditions (3) and (4), and confining 
ourselves to the first approximation for the problem with a = const and t e = const, we obtain 

2a ~ -  (x--l)  ~ ~ ~ ]. (6) ]JJ 

F o r  G = f(T), confining ou r se lves  to the s ame  f i r s t  approximat ion ,  we obtain 
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[ x )] S' a(e)at~ exp{- (x--l)2 -}de. t(z, x)=T~ 1 - - O ( 2 a V _  ~_ ~, ]/~_(~_e)~/2 4a2(z--. #) 
0 

(7) 

As can be seen, in the general ease the solution has the form 

t (% x) = F (% x) - -  J" a (e) r [(~ - -  e), x] de. (8) 
0 

If  we replace the function c~(O) under the integral  by a pieeewise-s tep function, the bes t  approximation 
is obtained when 

j~ "t" t "l'z T 

 ]ae+ x]ae, (9) 
o 0 ' ~ f  X ( n _ l )  f 

The lower l imit in all the integrals ,  except the f i rs t ,  is found f rom the condition 

"c(z_Df "Ci. t  

S x]ee-  .f ,]ee. 
0 0 

(lO) 

Bearing in mind that 

~(i-l) f 
,{f (~ai~ zl 

"~(i-Of o o 

e), x] de, 

we obtain the approximate solution of the problem with the function c~ = f(~-) replaced by the p iecewise-s tep  
function as the algebraic  sum of the solutions for a3i = const,  when a se r ies  of solutions Tif is obtained. 

We will show that, bear ing  in mind the uniqueness theorem,  on the bas is  of the method for the approx-  
imate numer ica l  solution of the problem of the unsteady tempera ture  field for boundary conditions which 
va ry  with time for  bodies of c lass ica l  shape, we can use the solution obtained for constant boundary condi-  
tions. 

Fo r  example,  for  a cyl inder  of infinite length, according to [4], we have 
co 

if= t--t ,  _ i__  A.J o pn-~ 
t c -- t. 

n = l  

Consider  the problem of the heating of a cylinder of infinite length f o r  variable boundary conditions of 
the third kind. We will assume that the boundary conditions on the surface of the cylinder are  such that the 
tempera ture  of the medium t e remains  constant and only the heat t r ans fe r  coefficient a = f0") var ies  with 
time. 

Replacing a = f(~') by the p iecewise-s tep  function, as shown above, we obtain the solution in the form 
of the algebraic  sum of solutions,  if the quantities Tif(Fo) are determined.  The quantity 1-ff is found f rom 
the condition 

, 

X r [ r 

n ~ l  n - - I  

i .e . ,  condition (10). In other words ,  f rom the value of the function 01 = f(Bi 1, Fo l) at the end of the interval 
in which aa l  is constant,  we find the fictitious time Tlf for V~a2 to calculate ~ = f(Bi 2, Fo), in the interval 
in which ~a  2 is constant f rom Tlf to T 2 = ~'lf + Av2, etc. 

Start ing f rom this assumption,  the theoret ical  model can be represented  in the following form.  By 
replacing the continuous function ~ = f(T) by a p iecewise-s tep  function in the l imits  of the f i rs t  t ime interval 
in which o~a 1 is constant,  we determine O1 = f(Bip F o i l  F r o m  the value of O1, reached at the end of the f i rs t  
t ime interval ,  we determine the fictitious t ime ~'lf, which cor responds  to the same value of ~71, but for a new 
value of Bi2(~a2 ). Then, f rom the function ~ = f(Bi 2, Fo) we find the value of the relative tempera ture  in the 
t ime interval f rom ~'lf to T 2 = Tlf + AT2, where AT 2 represen ts  the section in which OZa2 is constant.  F r o m  
the value of 0-2 = f(Bi2, F~ we find T2f for ~a3, etc. 
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Since,  when solv ing p r o b l e m s  of unsteady heat conduction 
with variable  boundary conditions on an analog computer  the f 
functions oz = f(~') are s imulated  by p i e e e w i s e - s t e p  functions,  
it i s  of in teres t  to compare  the solut ions obtained by the above 
approximate method with the solution obtained on an analog 
computer  for bodies  of c l a s s i c a l  shape. Moreover ,  s ince  for 
smal l  values  of Fo the re lat ive  e r r o r  in the solution of heating 
p r o b l e m s  on analog computers  can e x c e e d  10-15%, to e l iminate  
the ef fect  of the e r r o r s  introduced by the d i s c r e t e n e s s  of the 
grid on the re su l t s  obtained in comparing  the numer ica l  solution 
with the grid solution,  in the numer ica l  method we used as the 
initial function not re lat ion (11), but the functions ~ = f(Bi,  Fo) 
for chosen points of the cyl inder obtained on the analog c o m -  
puter in a s e r i e s  of p r o b l e m s  of s imple  heating. The numerica l  
values  of ~ for points at radii 0.0875 and 0.0125 m on a cyl inder 
of radius R = 0.1 m for a s e r i e s  of values  of Bi  and Fo are 
shown in Table 1. 

The procedure  descr ibed  for calculating the heating con-  
ditions for a cyl inder of infinite length for the case  a = f(T), 
t c = const  was  checked on e x a m p l e s .  We compared  the s o l u -  
t ions obtained on an analog computer  with the numer ica l  s o l u -  
t ions for a s t ee l  cyl inder of radius R = 0.1 m ,  thermal  con-  
ductivity ~ = 35 W / m .  deg, and a = 0.045 m 2 / h .  

The resu l t s  of the compar i son  are shown in Table 2. Anal-  
y s i s  of the data shows that, to an accuracy  which is  sa t i s fac tory  
for pract ica l  ca lculat ions ,  the prob lems  of heating with boundary 
condit ions ~ = f(T), t c = const  can be so lved numer ica l ly  on a 
computer  using re lat ions  of the type (11) for bodies  of c l a s s i c a l  

shape. 

Since in prob lems  of unsteady heat conduction with v a r i -  
able boundary conditions of the third kind a change in the t e m -  
perature  of the med ium nearly  always o c c u r s ,  it i s  n e c e s s a r y  
to take into account the variat ion t c = f(~-) in the numerica l  
method of solution.  

We wi l l  cons ider  anumber  of heating prob lems  with 
= const  and tc = f(~'). In all prob lems  the continuous function 
tc i s  replaced by a p i e c e w i s e - s t e p  function, so  that in the 
separate  in terva l s  in which t e i s  constant the change in the 
re la t ive  t emperature  of the points of the cyl inder of infinite 
length can be found from Eq. (11). Since,  at the instant when 
an abrupt change in the temperature  of the medium o c c u r s ,  
the temperature  of the body remains  unchanged, the jump in 
t c i s  e x p r e s s e d  by a corresponding  change in the re lat ive  t e m -  
perature  of the body 

tci+t - -  t~ (12) 

The change in the re la t ive  temperature  0i for o~ = const ,  
due to a change in tc i  indicates  that the heating for a new value 
of tci  + 1 wi l l  take place f rom a certa in  f ict i t ious  instant of t ime  
represented  by the new value 0 (i + 1)H for ~ = eonst .  

Table 3 shows the re su l t s  of a compar i son  of the solut ions 
obtained on an analog computer  and the solut ions obtained nu- 
m e r i c a l l y  for a s e r i e s  of values  for o~ = const  at points at radii  
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Fig. 1. Boundary eonditions (a) on the surfaee of the 
eylinder, and comparison of the change in temperature 
(b) at points on the cylinder (Fig. la): a) 1) heat t r a n s -  
fer  coefficient under condition A; 2) under condition B, 
3) t empera ture  of the medium under condition A; 4) 
under condition B; b) 1) t empera ture  at the radius 
0.0875 m under condition B; 2) under condition A; 3) 
at a radius of 0.0125 m under condition A; the curves  
are  theoret ical  and the points are  modelling data. 

0.0875 and 0.0125 m. We have considered the same cylinder  as in problems of the f i rs t  type. As can be 
seen, the value of the relative e r r o r  of the numerical  solution as compared  with the solution obtained on 
the analog computer  is not g rea te r  than 2%, which cor responds  to the accuracy  of the solution of problems 
of unsteady heat conduction on modell ing devices.  

Both the f i rs t  andL the second c lass  of problems are  obviously par t icu lar  cases  of the general  problem 
of unsteady heat conduction with boundary conditions which vary  with t ime, when ~ = fl(~') and tc = f2(T) are 
a rb i t r a ry .  Taking into account the fact that the deviation of the assigned values of ~ai f rom the actual values 
introduces a smal le r  e r r o r  into the solution than the deviation of tci, the problem can be represen ted  in the 
general  case as a se r i e s  of problems with ~ai = const and t c = f(~-). In this case the accuracy  of the solution 
in the l imits  of the interval  ~ai = eonst is governed by the accuracy  with which tc is approximated. 

Figure  lb shows the resul ts  of a compar ison  of the numerica l  solution with the solution obtained on an 
analog computer  for the problem of the heating of a cylinder with quite a r b i t r a r y  variat ions of a = f l (f)  and 
t e -- f2(T) (see Fig. la) for points at radii of 0.0875 and 0.0125. The solutions considered for piecewise func-  
tions show that the difference between the numerica l  solutions using the above method and the solutions ob-  
tained on the analog computer  does not exceed the normal  analog computer  e r r o r .  

Hence, the resul ts  show that if functions of the type (11) are known at any point on the body, a numer i -  
cal solution can be obtained for the variat ion in tempera ture  at the given point of the body for any varying 
boundary conditions of the third kind. Fo r  this reason  we call functions of the type (11) general ized t empe r -  
ature functions. 

The above method of solving problems of unsteady heat conduction with varying boundary conditions 
of the third kind can obviously also be used for bodies of complex shape, if the general ized tempera ture  
functions ~-= f(Bi, Fo) are known at different points. Since each function 5 represents the change in the re- 
lative temperature at the given point for constant boundary conditions c~ = eonst and t c = const, the general- 
ized functions for different points of a body of complex shape can be obtained by electrical simulation of a 
series of problems of simple heating on an analog computer. 

We will consider some examples of the use of this method of calculating unsteady temperature fields 
in bodies of complex shape for varying boundary conditions of the third kind. 

Consider the single-walled casing of a steam turbine with heat-insulating external walls and a heat 
supply to the internal contour only. The casing is made of 20KhMF-L steel. 
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Fig.  2. Generalized functions ~ = f(Bi, Fo) at point 1 
of the casing (a), the relat ive heat t ransfer  coeff icient 
~g /~0  at points l a n d  2 for d0 = 29 W/m2.deg  (b), and 
comparison of the changes in temperature obtained by 
calculat ion a~d by s imulat ion under condit ion A (c): a) 
1) Bi = 7.92; 2) 3.96; 3) 1.98; 4) 0.94; 5) 0.47; 6) 0.234; 
7) 0.177; b) 1) condition A; 2) condition B; c) 1) at point 
2; 2) at point 4; 3) at point 3; the cu rves  a re  theore t ica l  
and the points a re  s imulat ion data.  

F igure  2a shows the genera l ized  t e m p e r a t u r e  functions for  point 1 on the wall of the casing,  and the 
scheme  for  the numer i ca l  solution under  condition 2 is shown graphica l ly  (Fig. 2b). Compar ing  the change 
in re la t ive  t e m p e r a t u r e  at points  2, 3, and 4 obtained numer ica l ly ,  using the genera l ized  functions ~ = f(Bi, 
Fo),  and the method of e l ec t r i ca l  model l ing of the p rob l em with vary ing  boundary conditions (see Fig.  2c), 
we see that the method of calculat ion sa t i s f i es  p rac t i ca l  r equ i r emen t s .  

Consider  the mul t i s tage  un i t - forged  ro to r  of a s t e am turbine with a heat  supply to the e x t e r n a l  contour,  
made  of EI-415 s teel .  F igure  3a shows the genera l ized  t e m p e r a t u r e  functions at point 32, obtained by e l e c -  
t r i ca l  s imulat ion of a s e r i e s  of s imple  heat ing conditions. F igure  3b shows data on the heat  exchange con-  
ditions in the region of this point under  one of the s t a r t - u p  conditions,  and the r e su l t s  of a compar i son  of 
the numer ica l  solution using genera l ized  functions with the solution of the s ame  p rob lem on an analog c o m -  
puter .  
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0 2 4, "r 

Fig.  3. Genera l i zed  functions 0 = f(Bi, Fo) at point 32 
of the ro to r  (a), boundary  conditions and change in t e m -  
p e r a t u r e  at point 32 obtained by calculat ion and s i m u l a -  
tion (b): a) 1) Bi = 24.5; 2) 10; 3) 5.5; 4) 2.0; 5) 0.5; b) 1) 
heat  t r a n s f e r  coefficient;  2) t e m p e r a t u r e  of the medium;  
3) t e m p e r a t u r e  of point 32; the cu rves  a r e  theore t ica l  and 
the points a re  s imulat ion data. 
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The examples confirm the usefulness of this method of solution since they widen the possibilities of 
analyzing the thermal state of the constructional elements of a motor under various transient conditions. 

Moreover, the method indicates one of the ways in which the use of an analog computer and an elec- 

tronic computer can be combined. 

We have considered only the simplest problems involving heat transfer at a single contour for cases 
when 0-= f(Bi, Fo). In order to use the method in problems of heat transfer over several contours, when 
the change in temperature at the given point depends not only on the heat transfer in the region of the point 
itself~ it is necessary to develop a method of determining the generalized functions at characteristic points 
when heat transfer occurs at a number of contours. 

tc i 
tci + 1 
~iK 

O(i + 1)H 

Tp 

TM 
Uc i 

~ai 

NOTATION 

is the temperature of the medium during the i-th interval of time; 
is the temperature of the medium at the (i + l)-th interval of time; 
is the relative temperature at the point at the end of the i-th interval during which tel is con- 
stant; 
is the relative temperature at the point at the beginning of the (i + l)-th interval during which 

tci  + 1 is constant;  
is  the t e m p e r a t u r e  of the body at the point obtained numer ica l ly ;  
is the t e m p e r a t u r e  of the body at the point obtained by simulat ion;  
is  the potential  of the med ium in the i - th  in te rva l  of t ime; 
is  the value of the heat  t r a n s f e r  coeff icient  ass igned  in the i - th  in terval .  
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