APPROXIMATE METHOD FOR THE NUMERICAL SOLUTION
OF UNSTEADY HEAT CONDUCTION PROBLEMS WITH
VARIABLE BOUNDARY CONDITIONS OF THE THIRD KIND

O. T. Il'chenko and L. I. Shifan UDC 536,24

An approximate method for solving unsteady heat conduction problems with variable bound-
ary conditions of the third order, which can be used for bodies of complex shape, is de-
scribed.

The existing methods for the numerical solution of the problem of the unsteady temperature field of
bodies of classical shape with boundary conditions of the third kind which vary with time [1-3] only enable
the temperature field to be calculated on a computer with a large memory, with certain limitations on the
assigned boundary conditions.

To investigate the temperature field of bodies of complex shape under transient conditions with bound-
ary conditions of the third kind which vary withtime, electrical simulation on grids is employed.

In view of the countless variety of possible transient conditions, it is of interest to find some approxi-
mate method of solving the problem of the unsteady temperature field for boundary conditions of the third
kind which vary in an arbitrary manner, which would enable one to solve the problem for bodies of complex
shape, without having to use multiple simulation, and for bodies of classical shape by the use of the simplest
computer,

Consider the one~dimensional problem of unsteady heat conduction in an infinite plate
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with the following initial and boundary conditions;
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The solution will be sought in the form
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By determining the functions py($) and p,(8) from the boundary conditions (3) and (4), and confining
ourselves to the first approximation for the problem with ¢ = const and te = const, we obtain
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For a = f(71), confining ourselves to the same first approximation, we obtain
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As can be seen, in the general case the solution has the form

T
t(t, x) =F (%, x) — j @ () @ [(1—9), x| dd. @®)
0
If we replace the function «($) under the integral by a piecewise-step function, the hest approximation
is obtained when

f a@) ¢ [(x—9), x]dd= S g, [(1—9), x]do+ 3‘2 aap [(t—9), x]dd+ ..+ f” ta,@ [(1—9), x] . (9)
1] 0 ‘rlf T(n—l)f

The lower limit in all the integrals, except the first, is found from the condition

Tpo1 T(i~—l)f
(og_@[c—0), xdd= | oapc—8) £dd. (10)
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Bearing in mind that
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Ta-1g

we obtain the approximate solution of the problem with the function & = f(7) replaced by the piecewise~step
function as the algebraic sum of the solutions for aj; = const, when a series of solutions 7i¢ is obtained.

We will show that, bearing in mind the uniqueness theorem, on the basis of the method for the approx-
imate numerical solution of the problem of the unsteady temperature field for boundary conditions which
vary with time for bodies of classical shape, we can use the solution obtained for constant boundary condi-
tions,

For example, for a cylinder of infinite length, according to [4], we have

il B —214".10 (un’—)exP(—ngo). a1)
t—1, - R

Consider the problem of the heating of a cylinder of infinite length for variable boundary conditions of
the third kind. We will assume that the boundary conditions on the surface of the cylinder are such that the
temperature of the medium t, remains constant and only the heat transfer coefficient « = f(7) varies with
time,

Replacing « = () by the piecewise~step function, as shown above, we obtain the solution in the form
of the algebraic sum of solutions, if the quantities Tj¢(Fo) are determined. The quantity 7y is found from

the condition ‘
E Andy ( B, R exp (—p; Foy) = Andy ( W, R exp (— p} Fo,g),

n= =1

i.e., condition (10). In other words, from the value of the function §; = f(Bi;, Foy) at the end of the interval
in which ajy, is constant, we find the fictitious time 74 for oa, to calculate § = f(Bi,, Fo), in the interval
in which aa, is constant from 74 to 79 = Typ + ATy, ete.

Starting from this agsumption, the theoretical model can be represented in the following form, By
replacing the continuous function o = f(r) by a piecewise-step function in the limits of the first time interval
in which aa, is constant, we determine 9, = f(Bi;, Fo;). From the value of §;, reached at the end of the first
time interval, we determine the fictitious time 74, which corresponds to the same value of 7y, but for a new
value of Biz(ozaz). Then, from the function § = f(Bi,, Fo) we find the value of the relative temperature in the
time interval from T4 to 7, = Ty + AT, Where AT, represents the section in which aq, is constant. From
the value of 9, = f(Biy, Foy) we find 7y for ay,, ete.
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Since, when solving problems of unsteady heat conduction
with variable boundary conditions on an analog computer the f
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w QXIS IINS functions « = f(r) are simulated by piecewise-step functions,
2| ZRIBEILLSS : ;
g & A it is of interest to compare the solutions obtained by the above
= approximate method with the solution obtained on an analog
o computer for bodies of classical shape. Moreover, since for
o P SRRLOOPNDHD . . . .
o 0 SURBEIAIRS small values of Fo the relative error in the solution of heating
g © problems on analog computers can exceed 10-15%, to eliminate
3 & o BORNOR the effect of the errors introduced by the discreteness of the
[=] — — . . . . -
s § LR grid on the results obtained in comparing the numerical solution
ol o| |® CO0OOCOOOD . s . s :
- 2 with the grid solution, in the numerical method we used as the
g 3 e € e 9 e B G € 10 initial function not relation (11), but the functions § = f(Bi, Fo)
e DFONLQHD N . . s
= | og;;gzzgz; for chosen points of the cylinder obtained on the analog com-
<] puter in a series of problems of simple heating. The numerical
: values of 8 for points at radii 0.0875 and 0,0125 m on a cylinder
; \N 2898828828 of radius R = 0.1 m for a series of values of Bi and Fo are
k= S - shown in Table 1,
g
fé The procedure described for calculating the heating con-
g g
© G| zgzryneeseg ditions for a cylinder of infinite length for the case « = f(7),
4&; OO H P t —
¢ = const was checked on examples, We compared the solu-
s tions obtained on an analog computer with the numerical solu-
B .
g s & | TRLORTRRVIR tions for a steel cylinder of radius R = 0,1 m, thermal con-
=8 BRBFF I T 00 ductivity A = 35 W/m - deg, and ¢ = 0,045 m?/h,
q) [~
'%: § The results of the comparison are shown in Table 2, Anal-
E s gggggggggg ysis of the data shows that, to an accuracy which is satisfactory
) g e cocooooo0oo _ for practical calculations, the problems of heating with boundary
o g :rf conditions @ ={(7), te = const can be solved numerically on a
B . SEIBRTEBS = computer using relations of the type (11) for bodies of classical
g ¥ | ododosssSss I shape.
P 2 =
3 & KREINBILIBIE o Since in problems of unsteady heat conduction with vari~
g I able boundary conditions of the third kind a change in the tem-~
° < oo & perature of the medium nearly always occurs, it is necessary
N =~ O ~<H [=] [ Xap] N
é" = SRR IRSER Tm T: to take into account the variation t, = f(7) in the numerical
8 JE, method of solution.
o S
g‘ 0, We will consider anumber of heating problems with o
g O vgnzesRoge & = const and te = (7). In all problems the continuous function
MO MM H IO LD LD
k= &0 e te is replaced by a piecewise~step function, so that in the
o < § separate intervals in which t; is constant the change in the
g ll relative temperature of the points of the cylinder of infinite
% -~ PO 101 OW 3 ‘ .
8 S i | 883883BEBR Ee length can be found from Eq. (11). Since, at the instant when
© G|l | ooccoecces v an abrupt change in the temperature of the medium occurs,
b= *,: s 3 the temperature of the body remains unchanged, the jump in
° = ki te is expressed by a corresponding change in the relative tem-
[~ %%m%olﬁlh{%gg & i fth b d
8 o 53‘ —~ASFWIDD U S - perature O e pody
; :; ODOCOOOOODO z_s) . _ tci""tﬂ
o = Beisny, = Bs — (12)
£ d 2 -
e = = 3] —
&} Dé 5 | SRBIIZRIES 2 The change in the relative temperature 9j for o = const,
o TI’ ) = due to a change in t¢; indicates that the heating for a new value
E S & of tcj ., will take place from a certain fictitious instant of time
@ g g mOSIRoNne 28 represented by the new value 6 + 1)y for o = const,
. — et G O O
3 'g ° A Table 3 shows the results of a comparison of the solutions

obtained on an analog computer and the solutions obtained nu-
merically for a series of values for o = const at points at radii
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Fig. 1. Boundary conditions (a) on the surface of the
cylinder, and comparison of the change in temperature
(b) at points on the cylinder (Fig. 1a): a) 1) heat trans=-
fer coefficient under condition A; 2) under condition B,
3) temperature of the medium under condition A; 4)
under condition B; b) 1) temperature at the radius
0.0875 m under condition B; 2) under condition A; 3)

at a radius of 0.0125 m under condition A; the curves
are theoretical and the points are modelling data,

0.0875 and 0.0125 m. We have considered the same cylinder as in problems of the first type., As can be
seen, the value of the relative error of the numerical solution as compared with the solution obtained on
the analog computer is not greater than 2%, which corresponds to the accuracy of the solution of problems
of unsteady heat conduction on modelling devices,

Both the first and the second class of problems are obviously particular cases of the general problem
of unsteady heat conduction with boundary conditions which vary with time, when o = {1(7) and t¢ = f,(7) are
arbitrary. Taking into account the fact that the deviation of the assigned values of wa; from the actual values
introduces a smaller error into the solution than the deviation of tg;, the problem can be represented in the
general case as a series of problems with ¢aj = const and t¢ = f(7). In this case the accuracy of the solution
in the limits of the interval waa; = const is governed by the accuracy with which {¢ is approximated.

Figure 1b shows the results of a comparison of the numerical solution with the solution obtained on an
analog computer for the problem of the heating of a cylinder with quite arbitrary variations of « =£f;(7) and
te = f4(7) (see Fig. la) for points at radii of 0.0875 and 0.0125. The solutions considered for piecewise func~
tions show that the difference between the numerical solutions using the above method and the solutions ob~
tained on the analog computer does not exceed the normal analog computer error,

Hence, the results show that if functions of the type (11) are known at any point on the body, a numeri-
cal solution can be obtained for the variation in temperature at the given point of the body for any varying
boundary conditions of the third kind, For this reason we call functions of the type (11) generalized temper=-
ature functions.

The above method of solving problems of unsteady heat conduction with varying boundary conditions
of the third kind can obviously also be used for bodies of complex shape, if the generalized temperature
functions & = £(Bi, Fo) are known at different points, Since each function § represents the change in the re-
lative temperature at the given point for constant boundary conditions o = const and t, = const, the general~-
ized functions for different points of a body of complex shape can be obtained by electrical simulation of a
series of problems of simple heating on an analog computer.

We will consider some examples of the use of this method of calculating unsteady temperature fields
in bodies of complex shape for varying boundary conditions of the third kind.

Consider the single-walled casing of a steam turbine with heat~insulating external walls and a heat
supply to the internal contour only, The casing is made of 20KhMF~L steel.
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Fig., 2. Generalized functions § = £f(Bi, Fo) at point 1
of the casing (a), the relative heat transfer coefficient
ag/ o at points 1 and 2 for oy = 29 W/m?- deg (b), and
comparison of the changes in temperature obtained by
calculation and by simulation under condition A (¢): a)
1) Bi = 7.92; 2) 3.96; 3) 1.98; 4) 0.94; 5) 0.47; 6) 0.234;
7) 0.177; b) 1) condition A; 2) condition B; ¢) 1) at point
2; 2) at point 4; 3) at point 3; the curves are theoretical
and the points are simulation data,

Figure 2a shows the generalized temperature functions for point 1 on the wall of the casing, and the
scheme for the numerical solution under condition 2 is shown graphically (Fig. 2b). Comparing the change
in relative temperature at points 2, 3, and 4 obtained numerically, using the generalized functions § = f(Bi,
Fo), and the method of electrical modelling of the problem with varying boundary conditions (see Fig. 2¢),
we see that the method of calculation satisfies practical requirements,

Cor}sider the multistage unit-forged rotor of a steam turbine with a heat supply to the external contour,
made of EI-415 steel, Figure 3a shows the generalized temperature functions at point 32, obtained by elec-
trical simulation of a series of simple heating conditions. Figure 3b shows data on the heat exchange con~
ditions in the region of this point under one of the start-up conditions, and the results of a comparison of
the numerical solution using generalized functions with the solution of the same problem on an analog com-

puter.
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Fig., 3. Generalized functions § = f(Bi, Fo) at point 32

of the rotor (a), boundary conditions and change in tem-
perature at point 32 obtained by calculation and simula-
tion (b): a) 1) Bi = 24.5; 2) 10; 3) 5.5; 4) 2.0; 5) 0.5; b) 1)
heat transfer coefficient; 2) temperature of the medium;
3) temperature of point 32; the curves are theoretical and
the points are simulation data.
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The examples confirm the usefulness of this method of solufion since they widen the possibilities of
analyzing the thermal state of the constructional elements of a motor under various transient conditions,

Moreover, the method indicates one of the ways in which the use of an analog computer and an elec~
tronic computer can be combined,

We have considered only the simplest problems involving heat transfer at a single contour for cases
when 4 = {(Bi, Fo). In order to use the method in problems of heat transfer over several contours, when
the change in temperature at the given point depends not only on the heat transfer in the region of the point
itself, it is necessary to develop a method of determining the generalized functions at characteristic points
when heat transfer occurs at a number of contours.

NOTATION
te; is the temperature of the medium during the i-th interval of time;
tei 4y is the temperature of the medium at the (i + 1)~th interval of time;
fig is the relative temperature at the point at the end of the i-th interval during which t¢; is con-

stant;

04 +1)H is the relative temperature at the point at the beginning of the (i + 1)~th interval during which
tei 4.4 18 constant;

Tp is the temperature of the body at the point obtained numerically;

Ty is the temperature of the body at the point obtained by simulation;

uej is the potential of the medium in the i-~th interval of time;

Qa4 is the value of the heat transfer coefficient assigned in the i-th interval.
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